原子力显微镜/AFM的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下几种:
1 接触模式
将一个对微弱力极敏感的微悬臂的一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触。由于针尖尖端原子与样品表面原子间存在极微弱的排斥力(10e-8~10e-6N),由于样品表面起伏不平而使探针带动微悬臂弯曲变化,而微悬臂的弯曲又使得光路发生变化,使得反射到激光位置检测器上的激光光点上下移动,检测器将光点位移信号转换成电信号并经过放大处理,由表面形貌引起的微悬臂形变量大小是通过计算激光束在检测器四个象限中的强度差值(A+B)-(C+D)得到的。将这个代表微悬臂弯曲的形变信号反馈至电子控制器驱动的压电扫描器,调节垂直方向的电压,使扫描器在垂直方向上伸长或缩短,从而调整针尖与样品之间的距离,使微悬臂弯曲的形变量在水平方向扫描过程中维持一定,也就是使探针-样品间的作用力保持一定。在此反馈机制下,记录在垂直方向上扫描器的位移,探针在样品的表面扫描得到完整图像之形貌变化,这就是接触模式。
2 横向力(摩擦力)显微镜(LFM)
横向力显微镜(LFM)是在原子力显微镜/AFM表面形貌成像基础上发展的新技术之一。工作原理与接触模式的原子力显微镜/AFM相似。
当微悬臂在样品上方扫描时,由于针尖与样品表面的相互作用,导致悬臂摆动,其摆动的方向大致有两个:垂直与水平方向。一般来说,激光位置探测器所探测到的垂直方向的变化,反映的是样品表面的形态,而在水平方向上所探测到的信号的变化,由于物质表面材料特性的不同,其摩擦系数也不同,所以在扫描的过程中,导致微悬臂左右扭曲的程度也不同,检测器根据激光束在四个象限中,(A+C)-(B+D)这个强度差值来检测微悬臂的扭转弯曲程度。而微悬臂的扭转弯曲程度随表面摩擦特性变化而增减(增加摩擦力导致更大的扭转)。激光检测器的四个象限可以实时分别测量并记录形貌和横向力数据。
3 轻敲模式
用一个小压电陶瓷元件驱动微悬臂振动,其振动频率恰好高于探针的机械共振频率(~50kHz)。由于探针的振动频率接近其共振频率,因此它能对驱动信号起放大作用。当把这种受迫振动的探针调节到样品表面时(通常2~20nm),探针与样品表面之间会产生微弱的吸引力。在半导体和绝缘体材料上的这一吸引力,主要是凝聚在探针尖端与样品间水的表面张力和范德华吸引力。虽然这种吸引力比在接触模式下记录到的原子之间的斥力要小一千倍,但是这种吸引力也会使探针的共振频率降低,驱动频率和共振频率的差距增大,探针尖端的振幅减少。这种振幅的变化可以用激光检测法探测出来,据此可推出样品表面的起伏变化。
当探针经过表面隆起的部位时,这些地方吸引力,其振幅便变小;而经过表面凹陷处时,其振幅便增大,反馈装置根据探针尖端振动情况的变化而改变加在Z轴压电扫描器上的电压,从而使振幅(也就是使探针与样品表面的间距)保持恒定。同STM和接触模式AFM一样,用Z驱动电压的变化来表征样品表面的起伏图像。
在该模式下,扫描成像时针尖对样品进行“敲击”,两者间只有瞬间接触,克服了传统接触模式下因针尖被拖过样品而受到摩擦力、粘附力、静电力等的影响,并有效的克服了扫描过程中针尖划伤样品的缺点,适合于柔软或吸附样品的检测,特别适合检测有生命的生物样品。
4 相移模式(相位移模式)
作为轻敲模式的一项重要的扩展技术,相移模式(相位移模式)是通过检测驱动微悬臂探针振动的信号源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。
引起该相移的因素很多,如样品的组分、硬度、粘弹性质等。因此利用相移模式(相位移模式),可以在纳米尺度上获得样品表面局域性质的丰富信息。迄今相移模式(相位移模式)已成为原子力显微镜/AFM的一种重要检测技术。
5 曲线测量
SFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜/AFM测量并记录了探针所感受的力,从而得到力曲线。Zs是样品的移动,Zt是微悬臂的移动。这两个移动近似于垂直于样品表面。用悬臂弹性系数c乘以Zt,可以得到力F=c·Zt。如果忽略样品和针尖弹性变形,可以通过s=Zt-Zs给出针尖和样品间相互作用距离s。这样能从Zt(Zs)曲线决定出力-距离关系F(s)。这个技术可以用来测量探针尖和样品表面间的排斥力或长程吸引力,揭示定域的化学和机械性质,像粘附力和弹力,甚至吸附分子层的厚度。如果将探针用特定分子或基团修饰,利用力曲线分析技术就能够给出特异结合分子间的力或键的强度,其中也包括特定分子间的胶体力以及疏水力、长程引力等。
6 纳米加工
扫描探针纳米加工技术是纳米科技的核心技术之一,其基本的原理是利用SPM的探针-样品纳米可控定位和运动及其相互作用对样品进行纳米加工操纵,常用的纳米加工技术包括:机械刻蚀、电致/场致刻蚀、浸润笔(Dip-Pen Nano-lithography,DPN)等。